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KNOWLEDGE BASE DEVELOPMENT FOR ASSEMBLY PLANNING USING 

EVIDENCE THEORY 

This paper presents an approach to assembly planning in the early phase of product development. The product 

specification, workstation, environment, equipment and tools are not fully known in the early stage of product 

development. When comparing product variants at this stage there is a lack of data that affects the efficiency  

of the manufacturing process. It is therefore necessary to apply methods useful in processing incomplete and 

uncertain data. The main indicator which helps in comparing different product variants is manufacturing time 

standard. This papier is focused on assembly tool selection which is one of important data influenced assembly 

time. Based on the proposed algorithm and case study, a tool selection method using a decision tree induced from 

a training set with reduced uncertainty is presented.   

1. INTRODUCTION 

The efficiency of the manufacturing process depends on the solutions established during 

the product design phase. It is therefore necessary to develop a method useful for comparing 

different product variants at the product design stage. In the design and manufacturing 

process, the importance of product assembly increases when customized products are offered. 

The assembly process is complex, so managing it during the manufacturing and product 

design phases is a challenge [1]. Researchers have focused on different aspects of the 

assembly process in their analysis. Modrak et al [2] discuss the assembly of custom product 

configurations and its complexity. Kern et al [3] discuss methods for planning modular 

assembly systems.  

The importance of machine learning and uncertainty processing is growing, and the 

authors discuss the application of artificial intelligence methods in various areas of manu-

facturing. Baas and Kwakernaak [4] proposed a method involved fuzzy sets to deal with 

multiple alternative decision problems under uncertainty. Möhring et al [5] present future 

opportunities related to new approaches to intelligent process control in woodworking. Tools 
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development of in intelligent mechatronic systems is discussed by Guergov [6]. Dalvi [7] uses 

artificial neural network (ANN) and motion study as tools for assembly sequence optimiza-

tion.  

At the product design stage, some of the data involved in the assembly process is 

uncertain, so it is necessary to use methods such as evidence theory, which are useful in 

processing such data.  

The aim of the research is to develop a method for the selection of assembly tools taking 

into account the incomplete characteristics of the production process. The scope of the 

research concerns the example of assembly a bearing on a shaft. 

2. STATE OF ART 

2.1. EVIDENCE THEORY 

Evidence theory known as Dempster-Shafer theory (DST) is one of the effective 

methods of uncertain information processing [8, 9].  

An analysis of the literature on DST applications presents different concepts of data 

analysis, which come from different sources. DST can be combined with other methods such 

as fuzzy sets, rough sets and neural networks, for example.  

DST has been applied, for example, by Yu et. al. [8] to clustering error reduction, where 

evidence theory was used to construct and collect K-nearest neighbour information to assign 

uncluttered objects to the most appropriate cluster, effectively solving the cluster label error 

propagation problem.  

Liu et al. use DST for glass defect identification [9]. In this approach, DST was 

combined with image classification methods using artificial neural networks and fuzzy  

k-nearest neighbour classifier. 

Qing et al. [10] apply DST and rough sets for internet intrusion detection system. This 
approach combines rough sets theory and the evidence theory, which can solve  
the difficulty of acquiring the Basic Belief Assignment’s, reducing the correlativity 
among the evidences and weakening the subjectivity of evidences. The illustrative 
example shows that it is feasible and effective. 

Dymova et al. [11] applied DST and fuzzy sets to rule-based evidential inference in 

expert systems. DST is used to consider different data sources and fuzzy sets are used to apply 

linguistic terms in decision rules. 

Chen et al [12] use DST as a tool for multisensory data analysis in welding process. This 

method first uses the distance between the evidence to obtain the weights of the different 

evidences, and then fuzzy inference theory was applied to adjust the basic probability 

assignment (BPA) for each piece of evidence according to the resulting weights, and then  

the adjusted BPAs were combined using DST fusion rules to obtain finally the fusion results. 

Wu et al [13] propose to analyse big data from assembly process and make decisions 

with uncertain information through locally linear embedding, evidence theory, support vector 

machine and adaptive boosting. Lv et al [14] uses Dempster-Shafer theory to combine  
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the aposteriori classification capabilities generated from different support vector data 

description for assembly lines to improve their production plans according to constantly 

changing customer requirements. The topics discussed above illustrate the complexity of the 

problem. 

Antonsson and Otto [15] discuss methods for incorporating inaccuracy into engineering 

design decision making based on fuzzy set for representing and manipulating inaccuracy in 

engineering design.  

The literature analysis shows that DST is an effective method for processing uncertain 

data. It gives good results when combined with other data analysis methods. 

2.2. ASSEMBLY PLANNING 

Integrating manufacturing and assembly techniques into the design process at an early 

stage will have a significant impact on productivity and customer satisfaction. The literature 

analysis presents different approaches to assembly planning.   

Michniewicz et al [16] developed approach in witch assembly process is automatically 

extracted from the CAD-file of the individual product.  

Sinha et al [17] proposes a novel object shape error response approach to estimate  

the dimensional and geometric variation of assembled products and then, relate these to 

process parameters, which can be interpreted as root causes of the object shape defects. Their 

approach leverages Bayesian 3-D convolutional neural networks integrated with CAD 

engineering simulations for root causes isolation. 

Ong et al. [18] presents a methodology that integrates the assembly Product Design and 

Planning (PDP) activities with the Workplace Design and Planning (WDP) activities to 

improve the efficiency and quality of assembly design and planning at the early design stage.  

Franciosa et al. proposes a novel methodology to optimize heterogeneous design tasks 

with competing parameters [19]. 

Design verification in the digital domain, was discuss by Maropoulos et al. [20] who 

describes a novel, hybrid design verification methodology that integrates model-based 

variability analysis with measurement data of assemblies, in order to reduce simulation 

uncertainty and allow early design verification from the perspective of satisfying key 

assembly criteria.  

Assembly systems configurations was discuss by Paralikas et al. [21]. Krüger et al [22] 

propose hybrid approaches integrated assembly automated processes with humans. Boerl et 

al. [23] aim their research on methodologies and tools to design and manage a complete 

flexible assembly system. Lange et al. [24] analysed several design and assembly alternatives 

and selected an optimized solution based on numerical simulation. Bley et al. [25] proposed 

an approach that helps to reduce redundant tasks and supports continuous data exchange in 

the assembly process.  

Comparing product variants in the early stages of product development requires data 

that are missing, which have an impact on the efficiency of the manufacturing process. This 

is a limitation that is also discussed in the literature. Paying attention to the assembly planning 

approach in the early phases of product development is important to achieve the target 
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standards of Industry 4.0, which includes material use, manufacturing operations, machine 

use, tool selection and product features, as well as the development of knowledge bases and 

other emerging technologies. Design for Manufacturing (DFM) and Design for Assembly 

(DFA) aim to correct and overcome the difficulties and waste associated with manufacturing 

and assembly at the design stage [26]. In addition, this field includes a decision support system 

and a knowledge base with guidelines for manufacturing and design that have emerged from 

the adoption of information and communication technologies. The development of a know-

ledge base for assembly planning using evidence theory is important in modern manufac-

turing systems because failure to consider this aspect can lead to excessive material consum-

ption, which has a significant impact on production cost and time. 

Putz et al. [27] presents a new approach for permanent productivity determination  

of assembly systems based on the usage of in-process acquired product data.  

The literature analysis shows that the assembly process is analysed by authors from 

different points of view. There is a lack of methods that are helpful in predicting the data 

needed to set time standards in the early stages of product development. The basic data needed 

for planning are time standards. The standard of time, which is a measure of the efficiency  

of the manufacturing process, depends, among other, on the tools used in the assembly 

process. In the product development process, all the detailed information related to the 

manufacturing process is not known, so it is necessary to use machine learning methods such 

as decision tree and DST to process uncertain data. 

2.3. KNOWLEDGE BASE  

One of the well-known method of knowledge representation is rule-based approach [28]. 

The knowledge base consists of IF-THEN rules and is commonly used to represent knowledge 

about manufacturing processes. Advantages and disadvantages of different methods  

of knowledge representation was discussed by Li et al. [28] 

Kusiak et al. [29] proposed a knowledge-based system KBSES for the selection  

of production equipment, i.e. machine tools and material handling carriers in an automated 

manufacturing system. Another approach proposed Geiskopf et al. [30] who presented 

detailed design of the tool assembly.  

The KBS for sustainable material selection proposed by Zarandi et al. [31] was deve-

loped based on heuristic rules and the experience of design experts. 

A knowledge prototype system for unit processes was developed by Zhang et al. [32]. 

The literature analysis shows that the rule-based approach is an effective approach in 

solving decision-making problems concerning manufacturing processes.  

3. PROBLEM DEFINITION  

There is a gap in assembly planning at an early stage of product development.  

The efficiency of the assembly process depends on factors such as the assembly method, 

connection type, tools used, etc. The connection type is determined during the design phase, 
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but the assembly method and tools are determined during production planning. The question 

is how to determine the likely assembly method and tools in the early stages of product 

development to compare different product variants.  

The aim of this article is finding the proper assembly tools with the use of machine 

learning method such as decision tree induced based on training set.  

In cases where the classification of the appropriate assembly tools in training set is 

uncertain, the method based on the evidence theory is used, which helps to classify a given 

case into the appropriate category and assign the right assembly tool to the given assembly 

task.  

4. PROPOSED APPROACH  

Proposed approach is focused on finding the right assembly tool for given assembly 

task. Assembly process can be divided into tasks according to liaison graph [33]. The assem-

bly task can be analysed with the following movements [34]:  

• picking up a component, 

• assembly - connection of two components, or disassembly - disconnection of the 

components,  

• putting down a component.  

The separated assembly task can be characterised by an object-attribute-value (OAV) 

framework [34], from which a training set for tool selection can be created. 

Assembly tools selection algorithm was presented in the Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The proposed approach 

The first step in proposed approach is focused on development of a training set for 

selection of assembly tools. The training set in the proposed approach contained a selected 

assembly task characterized by attributes derived from the product design characteristics.  

The second step in proposed approach is focused on identification of uncertain cases. It may 

Development of a training set for selection of assembly tools 

Using DST to reduce uncertain cases 

Rebuilding the training set 

Using machine learning methods for tool selection 

Identification of uncertain cases 
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happen that there are uncertain cases in the training set, where there are different outputs for 

the same input characteristics.  

The uncertain cases in the training set according to the third step of proposed approach, 

can be analyzed using DST.  

DST assumes that Θ={H1,H2,…,HX} be a finite non-empty set of mutually X exhaustive 

and exclusive states of system under consideration (hypothesis) known as frame  

of discernment. The power set denote 2Θ, composed with the 2X propositions of Θ, then 

2X={, {H1}, {H2},…., {HX}, {H1,H2},…., X}. DST assigns a belief mass to each element  

of the power set. Function m: 2X→[0,1] is called basic belief assignment (BBA), where mass 

of empty set is zero m()=0 and mass of all the members of the power set add up to a total 

of 1, ∑ 𝑚(𝐴) = 1𝐴2𝑋 .  

The mass m(A) represents how strongly the evidence supports A which, in a case  

of disjunction of states (hypothesis), has not been assigned to a subset of A because of insuffi-

cient information. Each subset Aϴ such as m(A)>0 is called the focal element.  

DST introduce belief function and plausibility function as the upper and lower bounds 

of a probability interval.   

The belief function Bel(A) for a set A is defined as the sum of all the masses of subsets 

of the set of interest according to formula (1).  

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵𝐴   (1) 

The Plausibility function Pl(A) is the sum of all the masses of the sets B that intersect 

the set of interest A according to formula (2). 

𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(Ᾱ) = ∑ 𝑚(𝐵)𝐵𝐴   (2) 

where Ᾱ is negation of A.  

The value of m(A) relates only to the set A and gives no additional information about 

any subsets of A.  

From the mass assignment the probability interval is bounded according to formula (3).  

Bel(A) ≤ P(A) ≤ Pl(A)  (3) 

For multiple evidences, Dempster’s rule of combination provides an approach to 

impacting several belief functions on the same frame of discernment. Let A and B be used for 

computing two belief functions Bel1 and Bel2, Dempster’s rule of combination can be defined 

in terms of two corresponding mass functions m1 and m2 according to formula (4). 

𝑚1,2(𝐶) = 𝑚1⊕𝑚2(𝐶) =
1

1−𝑅
∑ 𝑚1(𝐴)𝑚2(𝐵)

𝐴𝐵=𝐶
  (4) 

where R is calculated according to formula (5) and denotes the conflict degree between two 

pieces of evidence Bel1 and Bel2, where 0 means no conflict and 1 means total conflict.  

𝑅 = ∑ 𝑚1(𝐴)𝑚2(𝐵)
𝐴𝐵

    (5) 

It is obviously that if R is too large, the Dempster’s rule of combination will fail [9, 10].  

In the decision-making process related to the choice of assembly tools, the opinions  

of different experts can be used. Each expert can give his/her opinion on a particular option, 

e.g. yes, no, don't know. In this way, the evaluation results are presented as probabilities.  
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Based on the experts evaluation, the training set output probability can be calculated and 

the uncertain cases will be reduced. The criteria used by experts in assembly tools selection 

in uncertain cases are: quality, productivity and costs. The evaluation options given use 

criteria that can be assessed as probabilities based on the number of expert answers. 

In the next step of the proposed approach, the training set should be rebuilt and the lower 

probability cases should be removed from it. Finally, the machine learning method include 

e.g.: data-driven decision tree (DT) induction or artificial neural network (ANN) can be used 

for tool selection. Both methods can use the training set developed by the proposed algorithm. 

5. EXPERIMENTAL STUDY  

Experimental study concern shaft-bearing assembly tools selection for a given bea-

ring type. The bearings can be cold pressed onto the shaft using a hydraulic tool using  

the appropriate mounting bushings. It is also possible to put the bearings on the shaft with 

a mechanical tool, striking lightly and evenly so that the force is distributed over the entire 

circumference of the ring and the bearing is not damaged. To facilitate understanding  

of the described process, a figure of the shaft-bearing assembly process is provided below 

(Fig. 2) [35].  

Training set (Table 1) contain bearing assembly characteristic which included:  

• bearing seat type marked with ro, which may have the following values: cylindrical 

marked with the number 1, tapered marked with the number 2,   

• diameter marked with sr, which may have the following values: up to 80 mm marked 

with the number 1, from 80–220 mm marked with the number 2, above 220 mm 

marked with the number 3,  

• tools type, which is the output in the classification process and may have the follo-

wing values: mechanical marked with the number 1, hydraulic marked with the 

number 2, none marked with the number 0.  

 

Fig. 2. An example of small bearing assembly [35] 
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The training set included uncertain cases 4 and 5 as well as 6 and 7 in which different 

outputs are obtained for a common input characteristic, highlighted in grey in Table 1. Based 

on the Table 1, a decision tree was generated (Fig. 3). The number of incorrect classified cases 

in training set equal 2. 

Table 1. Training set 

Cases 4 and 5 from training set (Table 1) were analysed using DST. Simulated experts 

opinions were used and the probability of using the right tool was calculated. In the example 

shown, the first group of experts assesses quality (m1), the second assesses productivity (m2) 

and the third assesses costs (m3). Experts evaluated two options, the first (a) is about choosing 

a mechanical tool, the second (b) is about choosing a hydraulic tool for bearing assembly with 

diameter less than 80 mm. An example of the probability distribution is shown in Table 2. 

Fused belief degree of two pieces of evidence (join assessment of quality and productivity) is 

presented in Table 3, confidence intervals are presented in Table 4. 

 

Fig. 3. Decision tree induced from the training set with uncertain data 
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No 

Input Output 

Bearing seat type  

(cylindrical 1, tapered 2) - ro 

Diameter  

(up to 80 mm 1, from 80–220 

mm 2, above 220 mm 3) - sr 

Tools  

(mechanical 1, hydraulic 2, none 0) 

1 1 1 1 

2 1 2 0 

3 1 3 0 

4 2 1 1 

5 2 1 2 

6 2 2 1 

7 2 2 2 

8 2 3 2 
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Table 2. Probability assessment  

Variants m1 m2 m3 

a (1) 0.5 0.3 0.3 

b (2) 0.4 0.4  

Table 3. Fused belief degree of two pieces of evidence m1+m2 

Experts 2 

Experts 1 

m2(a) m2(b) m2(S) 

0.3 0.4 0.3 

m1 (a) 0.5 0.15 0.20 0.15 

m1 (b) 0.4 0.12 0.16 0.12 

m1(ϴ) 0.1 0.03 0.04 0.03 

Table 4. Confidence intervals 

Experts 12 Bel Pl 

m12(a) 0,49 0,53 

m12(b) 0,47 0,51 

Fused belief degree of two pieces of evidence (join assessment of quality and 

productivity calculated in Table 3 and costs) is presented in Table 5, confidence intervals are 

presented in Table 6, where Bel is the probability of the variant occurring if all known data 

support it, and Pl is the probability of the variant occurring if known and unknown data 

support it. 

Table 5. Fused belief degree of two pieces of evidence m12+m3 

Experts 3 

Experts 12 

m3(a) m3(b) m3(S) 

0.3 0 0.7 

m12 (a) 0.49 0.15 0.00 0.34 

m12 (b) 0.47 0.14 0.00 0.33 

m12(ϴ) 0.04 0.01 0.00 0.03 

Table 6. Confidence intervals 

Experts 123  Bel Pl 

m123(a) 0.58 0.62 

m123(b) 0.38 0.42 

The same procedure was repeated for the next uncertain cases in the training set, namely 

cases 6 and 7.  

Finally, the training set with reduced uncertainty is shown in Table 7 and the DT built 

from it is shown in Fig. 4. 
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Table 7. Training set with reduced uncertainty 

Bearing seat type  

(cylindrical 1, tapered 2) - ro 

Diameter  

(up to 80 mm 1, from 80–220 mm 2, 

above 220 mm 3) - sr 

Tools  

(mechanical 1, hydraulic 2, none 0) 

1 1 1 

1 2 0 

1 3 0 

2 1 1 

2 1 1 

2 2 2 

2 2 2 

2 3 2 

 

Fig. 4. Decision tree induced from the training set without uncertain data 

Table 8. Results comparison 
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8 2 3 2 2 2 2 
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A comparison of the results is shown in Table 8, where the classification of tools from 

the DT shown in Fig. 2 and Fig. 3 is analysed. The number of misclassifications in the DT 

shown in Fig. 2 is 2, the DT shown in Fig. 3 has no errors in the training set. 

The approach presented above allows to generate rules that can be added to the 

knowledge base for its development. The decision rules generated by DT (Fig. 4) are shown 

below: 

R1. If sr=3 and ro=1 then tool =0 

R2. If sr=3 and ro=2 then tool =2 

R3. If sr=2 and ro=1 then tool =0 

R4. If sr=2 and ro=2 then tool =2 

R5. If sr=1 then tool =1. 

6. CONCLUSIONS 

The assembly process is complex, and planning it early in product development is 

challenging. In order to compare different product variants, it is necessary to take into account 

attributes that depend on the structure of the product and those that depend on the planning  

of the production process, such as tools, equipment, workstation layout.  

Literature analysis presents different approaches to deal with uncertainty in design and 

manufacturing. DST applied in the article was combined with graph theory and rule-based 

approach and give good results.  

At the product design stage, some data from the manufacturing process is uncertain. 

DST is an effective method for uncertain data processing. The proposed approach focused on 

tool selection in assembly process using DST and machine learning method.  

Proposed approach based on the following stages: development of a training set for 

selection of assembly tools, identification of uncertain cases, using DST to reduce uncertain 

cases, rebuilding the training set, using machine learning methods for tool selection.  

A bearing assembly process was used as an example of the application of the proposed 

method. The uncertainty reduction of the training set using DST was analysed for two variants 

of bearing assembly using a hydraulic or a mechanical tool. Taking into account criteria such 

as quality, productivity and cost, the training set was reduced and a decision tree was 

constructed.  

The analysis of the results shows the number of errors in the training set extracted from 

the DT induced by the original training set and that from the reduction using DST. The DT 

induced from the reduced training set gives better results, there are no misclassified cases in 

the training set. 
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